Summarising with Box and Whisker plots
5 October 2015
The normal distribution – three tricky bits
18 January 2016

Inference is THE big idea of statistics. This is where people come unstuck. Most people can accept the use of summary descriptive statistics and graphs. They can understand why data is needed. They can see that the way a sample is taken may affect how things turn out. They often understand the need for control groups. Most statistical concepts or ideas are readily explainable. But inference is a tricky, tricky idea. Well actually – it doesn’t need to be tricky, but the way it is generally taught makes it tricky.

Procedural competence with zero understanding

I cast my mind back to my first encounter with confidence intervals and hypothesis tests. I learned how to calculate them (by hand  – yes I am that old) but had not a clue what their point was. Not a single clue. I got an A in that course. This is a common occurrence. It is possible to remain blissfully unaware of what inference is all about, while answering procedural questions in exams correctly.
But, thanks to the research and thinking of a lot of really smart and dedicated statistics teachers, we are able put a stop to that. And we must. Help us make great resourcces
We need to explicitly teach what statistical inference is. Students do not learn to understand inference by doing calculations. We need to revisit the ideas behind inference frequently. The process of hypothesis testing, is counter-intuitive and so confusing that it spills its confusion over into the concept of inference. Confidence intervals are less confusing so a better intermediate point for understanding statistical inference. But we need to start with the concept of inference.

What is statistical inference?

The idea of inference is actually not that tricky if you unbundle the concept from the application or process.
The concept of statistical inference is this –

We want to know stuff about a large group of people or things (a population). We can’t ask or test them all so we take a sample. We use what we find out from the sample to draw conclusions about the population.

That is it. Now was that so hard?

Developing understanding of statistical inference in children

I have found the paper by Makar and Rubin, presenting a “framework for thinking about informal statistical inference”, particularly helpful. In this paper they summarise studies done with children learning about inference. They suggest that “ three key principles … appeared to be essential to informal statistical inference: (1) generalization, including predictions, parameter estimates, and conclusions, that extend beyond describing the given data; (2) the use of data as evidence for those generalizations; and (3) employment of probabilistic language in describing the generalization, including informal reference to levels of certainty about the conclusions drawn.” This can be summed up as Generalisation, Data as evidence, and Probabilistic Language.
We can lead into informal inference early on in the school curriculum. The key Ideas in the NZ curriculum suggest that “ teachers should be encouraging students to read beyond the data. Eg ‘If a new student joined our class, how many children do you think would be in their family?’” In other words, though we don’t specifically use the terms population and sample, we can conversationally draw attention to what we learn from this set of data, and how that might relate to other sets of data.

Explaining directly to Adults

When teaching adults we may use a more direct approach, explaining explicitly, alongside experiential learning to understanding inference. We have just completed made a video: Understanding Inference. Within the video we have presented three basic ideas condensed from the Five Big Ideas in the very helpful book published by NCTM, “Developing Essential Understanding of Statistics, Grades 9 -12”  by Peck, Gould and Miller and Zbiek.

Ideas underlying inference

  • A sample is likely to be a good representation of the population.
  • There is an element of uncertainty as to how well the sample represents the population
  • The way the sample is taken matters.

These ideas help to provide a rationale for thinking about inference, and allow students to justify what has often been assumed or taught mathematically. In addition several memorable examples involving apples, chocolate bars and opinion polls are provided. This is available for free use on YouTube. If you wish to have access to more of our videos than are available there, do email me at n.petty@statslc.com.

Please help us develop more great resources

We are currently developing exciting innovative materials to help students at all levels of the curriculum to understand and enjoy statistical analysis. We would REALLY appreciate it if any readers here today would help us out by answering this survey about fast food and dessert. It will take 10 minutes at a maximum. We don’t mind what country you are from, and will do the currency conversions.  And in a few months I will let you know how we got on. and we would love you to forward it to your friends and students to fill it out also – the more the merrier! It is an example of a well-designed questionnaire, with a meaningful purpose.
 
 

1 Comment

  1. […] idea of reading beyond the data has been suggested as a step towards informal and then formal inference. We can perceive that our data does not represent all existing instances, and can make predictions […]

Leave a Reply

Your email address will not be published. Required fields are marked *